skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oli, Nischal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional (2D) tungsten disulfide nanosheets (WS2) could be a promising candidate for high-performance self-powered photodetectors. The present 2D nanosheets were obtained from liquid exfoliation in a mixture of ethanol, methanol, and isopropanol via a direct dispersion and ultrasonication method. Using the spin-coating technique, a thin film of uniform thickness was formed on the SiO2/Si substrate. Energy-dispersive X-ray analysis showed that the S/W ratio in the fabricated WS2 film was around 1.2 to 1.34, indicating certain deficiencies in the S atoms. These S vacancies induce localized states within the bandgap of pristine WS2, resulting in a higher conductivity in the exfoliated sample. The obtained thin film seems to be highly efficient in photoelectric conversion, with a responsivity of ~0.12 mA/W at 670 nm under zero bias voltage, with an intensity of 5.2 mW/cm2. Instead, at a bias of 2 V, it exhibits a responsivity of 12.74 mA/W and a detectivity of 1.17 × 1010 cm Hz1/2 W− 1 at 4.1 mW/cm2. The present 2D nanosheets exhibit high photon absorption in a wide range of spectra from the near infrared (IR) to near UV spectrum. 
    more » « less